

NIXIO Python Package for NIX Datafiles

The nixpy module contains the python binding to the nix c++ library. In order
to use it you also have to have the nix library installed.

Getting started

The following sections should help you getting started with nixpy.

	Installation Guidelines
	Dependencies

	Installation instructions

	Advanced installation

	Overview
	Design Principles

	Tutorials
	List of Tutorials

	Working with Files

	Basic data structures

	Tagging regions

	Features

	Storing the origin of data

	Adding arbitrary metadata

API Documentation

TODO write something

	API Documentation for Data
	File

	Block

	DataArray

	DataSet

	Tags

	Source

	Group

	API Documentation for Metadata
	Section

	Property

	Value

Installation Guidelines

Dependencies

NIXPy is a reimplementation of the NIX [https://github.com/G-Node/nix] library and file format for Python.
Since NIX is built upon HDF5, NIXPy depends on h5py [http://www.h5py.org/], the Python interface to the HDF5 data format.

NIXPy can also be used as an interface for the original NIX [https://github.com/G-Node/nix] library.
NIX [https://github.com/G-Node/nix] is therefore an optional dependency, if NIXPy is to be used in this mode.

The installation instructions below describe how to build or install NIXPy as a standalone, pure Python version of NIX.
To use NIXPy as a Python interface for NIX [https://github.com/G-Node/nix], see the advanced installation instructions.

Dependencies:

	h5py: http://docs.h5py.org/en/latest/build.html

	numpy: https://docs.scipy.org/doc/numpy-1.10.1/user/install.html

Optional dependencies (see advanced installation instructions):

	NIX: https://github.com/G-Node/nix

Installation instructions

The latest stable release of NIXPy is available on PyPi as nixio [https://pypi.python.org/pypi/nixio/].
Therefore, the simplest way to install NIXPy is to use pip:

pip install nixio

Advanced installation

To use NIXPy as a Python interface for the NIX library [https://github.com/G-Node/nix] it is necessary to install the NIX library before you can install or build NIXPy on your system.
The following two sections explain how NIX can be installed on Windows and Linux.

Linux

If you use the latest Ubuntu LTS you can install NIX from our PPA [https://launchpad.net/~gnode/+archive/ubuntu/nix] on launchpad.
First you have to add the PPA to your system:

sudo add-apt-repository ppa:gnode/nix
sudo apt-get update

Afterwards you can use apt to install the NIX package:

sudo apt-get install libnix-dev

If you want to use NIX on other distributions you have to compile and install NIX from source (see below).

Windows

To install NIX under Windows it is recommended to use the latest installer.
The installer can be downloaded from the nix releases [https://github.com/G-Node/nix/releases] on GitHub.

Build NIX from Source

In order to build and install NIX from source please follow the build instructions in the NIX repository.
Comprehensive build instructions for Linux can be found in the nix README.rst [https://github.com/G-Node/nix/blob/master/README.rst#getting-started-linux].
For Windows this information can be found in the nix Win32.md [https://github.com/G-Node/nix/blob/master/Win32.md] file.

Install NIXPy

Once the NIX library [https://github.com/G-Node/nix] is installed on your system you can proceed with the installation of the python bindings.

Compatibility

The NIX library [https://github.com/G-Node/nix] as well as NIXPy undergo continuous development and improvement.
Although most changes do not affect the NIX API, the compatibility between the NIX library and their bindings might still break from time to time.
Therefore it is worth mentioning which assumptions can be made concerning compatibility between versions of the NIX projects.

	The head of the master branches of the NIX library and the bindings are usually compatible to each other.

	Nix releases of the same version and their corresponding tags in the repositories are always compatible with each other e.g.
NIXPy 1.0.x is compatible with libnix 1.0.x etc.

Linux

If you use the latest Ubuntu LTS you can install NIXPy the same was as shown above for NIX from our PPA [https://launchpad.net/~gnode/+archive/ubuntu/nix] on launchpad.
If the PPA was not already added to your system, you can do so by executing the following commands::

sudo add-apt-repository ppa:gnode/nix
sudo apt-get update

Once the PPA was added NIXPy can be installed via apt-get:

sudo apt-get install python-nix

If you want to use NIXPy on other distributions, please follow the instructions for building NIXPy from source (see below).

Windows

To install NIXPy under Windows it is recommended to use the Windows installer.
Download the installer with the same version as your NIX installation from the NIXPy releases [https://github.com/G-Node/nixpy/releases] and execute the installer.
In addition NIXPy requires numpy to be installed.

Build NIXPy from Source

If you want to use the latest development version or in cases where the provided installers or packages can’t be used,
it is possible to build and install NIXPy from sources.
Instructions for building NIX on Linux can be found in the NIXPy README.rst [https://github.com/G-Node/nixpy/blob/master/README.rst#getting-started-linux] file.
For the Windows platform those instructions are described in the NIXPy Win32.md [https://github.com/G-Node/nixpy/blob/master/Win32.md] file.

Overview

Design Principles

The design of the data model tries to draw on similarities of
different data types and structures and and come up with entities
that are as generic and versatile as meaningful. At the same time we
aim for clearly established links between different entities to keep the
model as expressive as possible.

Most entities of the NIX-model have a name and a type field which
are meant to provide information about the entity. While the name can
be freely chose, the type is meant to provide semantic information
about the entity and we aim at definitions of different types. Via the
type, the generic entities can become domain specific.

For the electrophysiology disciplines of the neuroscience, an INCF
working groups has set out to define such data types. For more
information see here [http://crcns.org/files/data/nwb/ephys_requirements_v0_72.pdf]

Creating a file

So far we have implemented the nix model only for the HDF5 file
format. In order to store data in a file we need to create one.

import nixio as nix

nix_file = nix.File.open('example.h5', nix.FileMode.Overwrite)

The File entity is the root of this document and it has only two
children the data and metadata nodes. You may want to use the
hdfview tool to open the file and look at it. Of course you can access
both parts using the File API.

All information directly related to a chunk of data is stored in the
data node as children of a top-level entity called Block. A
Block is a grouping element that can represent many things. For
example it can take up everything that was recorded in the same
session. Therefore, the Block has a name and a type.

block = nix_file.create_block("Test block", "nix.session")

Names can be freely chosen. Duplication of names on the same
hierarchy-level is not allowed. In this example creating a second
Block with the very same name leads to an error. Names must not
contain ‘/’ characters since they are path separators in the HDF5
file. To avoid collisions across files every created entity has an
unique id (UUID).

block.id
'017d7764-173b-4716-a6c2-45f6d37ddb52'

Storing data

The heart of our data model is an entity called DataArray. This is
the entity that actually stores all data. It can take n-dimensional
arrays and provides sufficient information to create a basic plot of
the data. To achieve this, one essential part is to define what kind
of data is stored. Hence, every dimension of the stored data must
be defined using the available Dimension descriptors (below). The
following code snippets show how to create a DataArray and how to
store data in it.

create a DataArray and store data in it
data = block.create_data_array("my data", "nix.sampled", data=some_numpy_array)

Using this call will create a DataArray, set name and type, set
the dataType according to the dtype of the passed data, and store
the data in the file. You can also create empty DataArrays to take
up data-to-be-recorded. In this case you have to provide the space
that will be needed in advance.

import numpy as np
create an empty DataArray to store 2x1000 values
data = block.create_data_array("my data", "nix.sampled", dtype=nix.DataType.Double, shape=(2, 1000))
some_numpy_array = np.random.randn(2, 1000)
data.write_direct(some_numpy_array)

If you do not know the size of the data in advance, you can append
data to an already existing DataArray. Beware: Though it is
possible to extend the data, it is not possible to change the
dimensionality (rank) of the data afterwards.

create an empty DataArray to store 2x1000 values
data = block.create_data_array("my data", "nix.sampled", dtype=nix.DataType.Double, shape=(2, 1000))
some_numpy_array = np.random.randn(2, 1000)
data[:, :] = some_numpy_array
some_more_data = np.random.randn(2, 10)
data.data_extent((2, 1010))
data[:, 1000:] = some_more_data

Dimension descriptors

In the above examples we have created DataArray entities that are
used to store the data. The goal of our model design is that the data
containing structures carry enough information to create a basic
plot. Let’s assume a time-series of data needs to be stored: The data
is just a vector of measurements (e.g. voltages). The data would be
plotted as a line-plot. We thus need to define the x- and the y-axis
of the plot. The y- or value axis is defined by setting the label and
the unit properties of the DataArray, the x-axis needs a dimension
descriptor. In the nix model three different dimension descriptors are
defined. SampledDimension, RangeDimension, and
SetDimension which are used for (i) data that has been sampled in
space or time in regular intervals, (ii) data that has been sampled in
irregular intervals, and (iii) data that belongs to categories.

sample_interval = 0.001 # s
sinewave = np.sin(np.arange(0, 1.0, sample_interval) * 2 * np.pi)
data = block.create_data_array("sinewave", "nix.regular_sampled", data=sinewave)
data.label = "voltage"
data.unit = "mV"
define the time dimension of the data
dim = data.append_sampled_dimension(sample_interval)
dim.label = "time"
dim.unit = "s"

The SampledDimension can also be used to desribe space dimensions,
e.g. in case of images.

If the data was sampled at irregular intervals the sample points of
the x-axis are defined using the ticks property of a
RangeDimension.

sample_times = [1.0, 3.0, 4.2, 4.7, 9.6]
dim = data.append_range_dimension(sample_times)
dim.label = "time"
dim.unit = "s"

Finally, some data belongs into categories which do not necessarily
have a natural order. In these cases a SetDimension is used. This
descriptor can store for each category an optional label.

observations = [0, 0, 5, 20, 45, 40, 28, 12, 2, 0, 1, 0]
categories = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
 'Jul', 'Aug','Sep','Oct','Nov', 'Dec']
data = block.create_data_array("observations", "nix.histogram", data=observations)
dim = data.append_set_dimension()
dim.labels = categories

Annotate regions in the data

Annotating points of regions of interest is one of the key features of
the nix data-model. There are two entities for this purpose: (i) the
Tag is used for single points or regions while the (ii)
MultiTag is used to mark multiple of these. Tags have one or many
positions and extents which define the point or the region in the
referenced DataArray. Further they can have Features to store
additional information about the positions (see tutorials below).

Tag

The tag is a relatively simple structure directly storing the
position the tag points and the, optional, extent of this
region. Each of these are vectors of a length matching the
dimensionality of the referenced data.

position = [10, 10]
extent = [5, 20]
tag = block.create_tag('interesting part', 'nix.roi', position)
tag.extent = extent
finally, add the referenced data to this tag
tag.references.append(data)

MuliTag

MultiTags are made to tag multiple points (regions) at once. The
main difference to the Tag is that position and extent are stored
in DataArray entities. These entities must be 2-D. Both
dimensions are SetDimensions. The first dimension represents the
individual positions, the second dimension takes the coordinates in
the referenced n-dimensional DataArray.

fake data
frame = np.random.randn(100, 100)
data = block.create_data_array('random image', 'nix.image', data=frame)
dim_x = data.append_sampled_dimension(1.0)
dim_x.label = 'x'
dim_y = data.append_sampled_dimension(1.0)
dim_y.label = 'y'
positions array must be 2D
p = np.zeros((3, 2)) # 1st dim, represents the positions, 2nd the coordinates
p[1, :] = [10, 10]
p[2, :] = [20, 10]
positions = block.create_data_array('special points', 'nix.positions', data=p)
positions.append_set_dimension()
dim = positions.append_set_dimension()
dim.labels = ['x', 'y']
create a multi tag
tag = block.create_multi_tag('interesting points', 'nix.multiple_roi', positions)
tag.references.append(data)

Adding further information

The tags establish links between datasets. If one needs to attach
further information to each of the regions defined by the tag, one can
add Features to them. A Feature references a DataArray as
its data and specifies with the link_type how the link has to be
interpreted. The link_type can either be tagged, indexed, or
untagged indicating that the tag should be applied also to the
feature data (tagged), for each position given in the tag, a slice
of the feature data (ith index along the first dimension) is the
feature (indexed), or all feature data applies for all positions
(untagged).

Let’s say we want to give each point a name, we can create a feature like this:

spot_names = block.create_data_array('spot ids', 'nix.feature', dtype=nix.DataType.Int8, data=[1, 2])
spot_names.append_set_dimension()
feature = tag.create_feature(spot_names, nix.LinkType.Indexed)

We could also say that each point in the tagged data (e.g. a matrix of
measurements) has a corresponding point in an input matrix.

input_matrix = np.random.random(data.shape)
input_data = block.create_data_array('input matrix', 'nix.feature', data=input_matrix)
dim_x = input_data.append_sampled_dimension(1.0)
dim_x.label = 'x'
dim_y = input_data.append_sampled_dimension(1.0)
dim_y.label = 'y'
tag.create_feature(input_data, nix.LinkType.Tagged)

Finally, one could need to attach the same information to all
positions defined in the tag. In this case the feature is untagged

common_feature = block.create_data_array('common feature', 'nix.feature', data=some_common_data)
tag.create_feature(common_feature, nix.LinkType.Untagged)

Defining the Source of the data

In cases in which we want to store where the data originates
Source entities can be used. Almost all entities of the NIX-model
can have Sources. For example, if the recorded data originates
from experiments done with one specific experimental
subject. Sources have a name and a type and can have some
definition.

subject = block.create_source('subject A', 'nix.experimental_subject')
subject.definition = 'The experimental subject used in this experiment'
data.sources.append(subject)

Sources may depend on other Sources. For example, in an
electrophysiological experiment we record from different cells in the
same brain region of the same animal. To represent this hierarchy,
Sources can be nested, create a tree-like structure.

subject = block.create_source('subject A', 'nix.experimental_subject')
brain_region = subject.create_source('hippocampus', 'nix.experimental_subject')
cell_a = brain_region.create_source('Cell 1', 'nix.experimental_subject')
cell_b = brain_region.create_source('Cell 2', 'nix.experimental_subject')

Arbitrary metadata

The entities discussed so far carry just enough information to get a
basic understanding of the stored data. Often much more information
than that is required. Storing additional metadata is a central part
of the NIX concept. We use a slightly modified version of the odML
data model for metadata to store additional information. In brief: the
model consists of Sections that contain Properties which in
turn contain one or more Values. Again, Sections can be nested
to represent logical dependencies in the hierarchy of a tree. While
all data entities discussed above are children of Block entities,
the metadata lives parallel to the Blocks. The idea behind this is
that several blocks may refer to the same metadata, or, the other way
round the metadata applies to data entities in several blocks. The
types used for the Sections in the following example are defined
in the odml terminologies [https://github.com/G-Node/odml-terminologies]

Most of the data entities can link to metadata sections.

sec = nix_file.create_section('recording session', 'odml.recording')
sec.create_property('experimenter', nix.Value('John Doe'))
sec.create_property('recording date', nix.Value('2014-01-01'))
subject = sec.create_section('subject', 'odml.subject')
subject.create_property('id', nix.Value('mouse xyz'))
cell = subject.create_section('cell', 'odml.cell')
v = nix.Value(-64.5)
v.uncertainty = 2.25
p = cell.create_property('resting potential', v)
p.unit = 'mV'
set the recording block metadata
block.metadata = sec

Units

In NIX we accept only SI units (plus dB, %) wherever units can be
given. We also accept compound units like mV/cm. Units are most of
the times handled transparently. That is, when you tag a region of
data that has been specified with a time axis in seconds and use
e.g. the tag.retrieve_data method to get this data slice, the API
will handle unit scaling. The correct data will be returned even if
the tag’s position is given in ms.

x_positions=[2, 4, 6, 8, 10, 12]
tag=block.create_tag('unit example', 'nix.sampled', x_positions)

#single SI unit is supported like mV,cm etc.
tag.units=["cm"]

#for compound units we can do
tag.units=["mV/cm"]

Tutorials

The following tutorials show how to work with NIX files, to store
different kinds of data, tag points or regions of interest and add
further information to the data.

List of Tutorials

	Working with files

	Working with Files

	Basic data structures

	Regularly sampled data

	Irregularly sampled data

	Event data

	Series of signals

	Image data

	Tagging points and regions-of-interest

	Single point or region

	Multiple points or regions

	Tagging spikes in membrane potential

	Features

	Untagged Feature

	Tagged Feature

	Indexed Feature

	Retrieve data

	Retrieving tagged regions

	Retrieving feature data

	Additional information

	Storing the origin of data

	Adding arbitrary metadata

Working with Files

The following code shows how to create a new nix-file, close it and
re-open them with different access rights (examples/fileCreate.py).

#!/usr/bin/env python
-*- coding: utf-8 -*-

from __future__ import print_function

import nixio as nix

file_name = 'file_create_example.h5'

create a new file overwriting any existing content
nixfile = nix.File.open(file_name, nix.FileMode.Overwrite)
print(nixfile.format, nixfile.version, nixfile.created_at)

close file
nixfile.close()

re-open file for read-only access
nixfile = nix.File.open(file_name, nix.FileMode.ReadOnly)

this command will fail putting out HDF5 Errors
try:
 nixfile.create_block("test block", "test")
except ValueError:
 print("Error caught: cannot create a new group in nix.FileMode.ReadOnly mode")

nixfile.close()

re-open for read-write access
nixfile = nix.File.open(file_name, nix.FileMode.ReadWrite)

the following command now works fine
nixfile.create_block("test block", "test")

nixfile.close()

Source code of this example: fileCreate.py.

Selecting a backend

The open method supports specifying a NIX backend with the backend argument.
The H5Py backend is always available.

file = nix.File.open(file_name, nix.FileMode.Overwrite, backend="h5py")

Alternatively, if NIX [https://github.com/G-Node/nix] is installed and NIXPy was built with NIX support, the
HDF5 backend can be specified.

file = nix.File.open(file_name, nix.FileMode.Overwrite, backend="hdf5")

See the Advanced installation instructions for details on installing
NIXPy with NIX HDF5 backend support.

When no backend is specified, HDF5 is used if available, otherwise the library
defaults to H5Py.

List of Tutorials

Basic data structures

In this section we will show how different kinds of data are stored in
nix files. We will start with simple regularly and irregularly sampled
signals, turn to series of such signals and end with images stacks.

Regularly sampled data

Regularly sampled data is everything which is sampled in regular
intervals in space, time, or something else. Let’s consider a signal
that has been digitized using an AD-Converter at a fixed sampling
rate. In this case the axis representing time has to be described
using a SampledDimension. This dimension descriptor contains as
mandatory element the sampling_interval. The sampling_interval has
to be given because it also applies e.g. to spatial sampling, it is
the more general term than the sampling rate which may appear
appropriate for time discretization. Further, the unit in which this
number has to be interpreted and a label for the axis can be
specified. The following code illustrates how this is stored in nix
files.

 # create a 'Block' that represents a grouping object. Here, the recording session.
 # it gets a name and a type
 block = file.create_block("block name", "nix.session")

 # create a 'DataArray' to take the sinewave, add some information about the signal
 data = block.create_data_array("sinewave", "nix.regular_sampled", data=y)
 data.unit = "mV"
 data.label = "voltage"
 # add a descriptor for the xaxis
 dim = data.append_sampled_dimension(stepsize)
 dim.unit = "s"
 dim.label = "time"
 dim.offset = 0.0 # optional

[image: _images/regular_sampled.png]
Source code for this example regularlySampledData.py.

List of Tutorials

Irregularly sampled data

Irregularly sampled data is sampled at irregular intervals. The
dimension which is sampled in this way has to be described using a
RangeDimension. This dimension descriptor stores besides the
unit and label of the axis the ticks, e.g. time-stamps of the
instances at which the samples were taken.

 data = block.create_data_array("sinewave", "nix.irregular_sampled", data=y)
 data.unit = "mV"
 data.label = "voltage"
 # add a descriptor for the xaxis
 dim = data.append_range_dimension(times)
 dim.unit = "s"
 dim.label = "time"

[image: _images/irregular.png]
Source code for this example irregularlySampledData.py.

List of Tutorials

Event data

TODO

Series of signals

It is possible to store multiple signals that have the same shape and
logically belong together in the same DataArray object. In this
case, the data is two-dimensional and two dimension-descriptors are
needed. Depending on the layout of the data one dimension represents
time and is described with a SampledDimension while the other
represents the various signals. This is described with a
SetDimension. A SetDimension can have labels for each entry along
this dimension of the data.

 y = np.vstack((sine, cosine))
 data = block.create_data_array("waveforms", "nix.regular_sampled.multiple_series", data=y)
 data.unit = "mV"
 data.label = "voltage"
 # descriptor for first dimension is a set
 set_dim = data.append_set_dimension()
 set_dim.labels = ['sin', 'cos']
 # add a descriptor for the xaxis
 dim = data.append_sampled_dimension(stepsize)
 dim.unit = "s"
 dim.label = "time"

[image: _images/multiple_time_series.png]
Source code for this example: multipleTimeSeries.py.

List of Tutorials

Image data

Color images can be stored as 3-D data in a DataArray. The first two
dimensions represent width and height of the image while the 3rd
dimension represents the color channels. Accordingly, we need three
dimension descriptors. The first two are SampledDimensions since the
pixels of the image are regularly sampled in space. The third
dimension is a SetDimension with labels for each of the channels.
In this tutorial the “Lenna” image is used. Please see the author
attribution in the code.

 # create a 'DataArray' to take the sinewave, add some information about the signal
 data = block.create_data_array("lenna", "nix.image.rgb", data=img_data)
 # add descriptors for width, height and channels
 height_dim = data.append_sampled_dimension(1)
 height_dim.label = "height"
 width_dim = data.append_sampled_dimension(1)
 width_dim.label = "width"
 color_dim = data.append_set_dimension()

[image: _images/lenna.png]
if the image is not shown install imagemagick or xv tools (Linux)
Source code for this example: imageData.py.

List of Tutorials

Tagging regions

One key feature of the nix-model is its ability to annotate, or “tag”,
points or regions-of-interest in the stored data. This feature can be
used to state the occurrence of events during the recording, to state
the intervals of a certain condition, e.g. a stimulus presentation, or
to mark the regions of interests in image data. In the nix data-model
two types of Tags are discriminated. (1) the Tag for single points
or regions, and (2) the MultiTag to annotate multiple points or
regions using the same entity.

Single point or region

Single points of regions-of-interest are annotated using a Tag
object. The Tag contains the start position and, optional, the
extent of the point or region. The link to the data is established
by adding the DataArray that contains the data to the list of
references. It is important to note that position and extent are
arrays with the length matching the dimensionality of the referenced
data. The same Tag can be applied to many references as long as
position and extent can be applied to these.

 # create a Tag, position and extent must be 3-D since the data is 3-D
 position = [250, 250, 0]
 extent = [30, 100, 3]
 tag = block.create_tag('Region of interest', 'nix.roi', position)
 tag.extent = extent

[image: _images/single_roi.png]
Source code for this example singleROI.py.

List of Tutorials

Multiple points or regions

For tagging multiple regions of interest in the same data the
MultiTag object is used. Unlike the simple Tag from the
previous example, the multiple positions and extents can be
given. These are stored in DataArray objects. The tagged dataset
is linked via the references. There are some restrictions regarding
the DataArrays storing positions and extents. The data stored in
them must be 2-dimensional. Both dimensions are SetDimensions
representing the individual positions and the positions in the
referenced data, respectively. Thus, the second dimension has as many
entries as the referenced data has dimensions.

In the following example we will declare multiple ROIs in a image. The
image as a spatial extent and three color channels, is hence 3-D. The
same mechanism can, of course, be used to tag other event in different
kinds of data. For example in the neuroscience context: the detection
of action potentials in a recorded membrane potential.

 # some space for three regions-of-interest
 roi_starts = np.zeros((3, 3), dtype=int)
 roi_starts[0, :] = [250, 245, 0]
 roi_starts[1, :] = [250, 315, 0]
 roi_starts[2, :] = [340, 260, 0]

 roi_extents = np.zeros((3, 3), dtype=int)
 roi_extents[0, :] = [30, 45, 3]
 roi_extents[1, :] = [30, 40, 3]
 roi_extents[2, :] = [25, 65, 3]

 # create the positions DataArray
 positions = block.create_data_array("ROI positions", "nix.positions", data=roi_starts)

[image: _images/multi_roi.png]
Source code for this example multipleROIs.py.

List of Tutorials

Tagging spikes in membrane potential

Neuroscience example. The same construct as above is used to mark the
times at which action potentials were detected in the recording of a
neuron’s membrane potential.

 data = block.create_data_array("membrane voltage", "nix.regular_sampled.time_series", data=voltage)
 data.label = "membrane voltage"
 # add descriptors for time axis
 time_dim = data.append_sampled_dimension(time[1]-time[0])
 time_dim.label = "time"
 time_dim.unit = "s"

 # create the positions DataArray
 positions = block.create_data_array("times", "nix.positions", data=spike_times)
 positions.append_set_dimension() # these can be empty
 positions.append_set_dimension()

 # create a MultiTag
 multi_tag = block.create_multi_tag("spike times", "nix.events.spike_times", positions)
 multi_tag.references.append(data)

[image: _images/spike_tagging.png]
Source code for this example: spikeTagging.py.

List of Tutorials

Retrieving tagged regions

Tagging regions of interest in one thing but retrieving the tagged
data slice is another. The Tag and MultiTag entities offer a
function for this. Consider the image example from above:

[image: _images/multi_roi.png]
Three regions were tagged. To retrieve the respective data the
following code has to be executed:

def plot_roi_data(tag):
 position_count = tag.positions.shape[0]
 for p in range(position_count):

[image: _images/retrieved_rois.png]
Source code for this example: multipleROIs.py.

List of Tutorials

Unit support in tagging

TODO

List of Tutorials

Features

The following code shows how to use the Features of the
NIX-model. Suppose that we have the recording of a signal in which a
set of events is detected. Each event may have certain characteristics
one wants to store. These are stored as Features of the
events. There are three different link-types between the features and
the events stored in the tag. nix.LinkType.Untagged indicates that
the whole data stored in the Feature applies to the points defined
in the tag. nix.LinkType.Tagged on the other side implies that the
position and extent have to be applied also to the data stored in
the Feature. Finally, the nix.LinkType.Indexed indicates that
there is one point (or slice) in the Feature data that is related
to each position in the Tag.

The following examples show how this works.

Untagged Feature

Let’s say we record the activity of a neuron and at a certain epoch of
that recording a stimulus was presented. This time interval is
annotated using a Tag. This inidicates the time in which the
stimulus was on but we may also want to link the stimulus trace to
it. The stimulus is also stored as a DataArray in the file and can
be linked to the stimulus interval as an untagged Feature of it.

 time_dim.label = "time"
 time_dim.unit = "s"

 # create a Tag
 tag = block.create_tag("stimulus presentation", "nix.epoch.stimulus_presentation", [stim_onset])
 tag.extent = [stim_duration]
 tag.references.append(data)

[image: _images/untagged_feature.png]
Source code for this example: untaggedFeature.py.

List of Tutorials

Tagged Feature

Tagged Features are used in cases in which the positions and
extents of a tag also apply to another linked dataset. In the
following example the spike times should also be applied to the
stimulus that led to the responses. The stimulus is saved in an
additional DataArray and is linked to the spike times as a
Feature setting the LinkType to tagged.

 stimulus_array = block.create_data_array("stimulus", "nix.regular_sampled", data=stimulus)
 stimulus_array.label = "stimulus"
 stimulus_array.unit = "nA"
 # add a descriptor for the time axis
 dim = stimulus_array.append_sampled_dimension(stepsize)
 dim.unit = "s"
 dim.label = "time"

 # set stimulus as a tagged feature of the multi_tag
 multi_tag.create_feature(stimulus_array, nix.LinkType.Tagged)

 # let's plot the data from the stored information
 plot_data(multi_tag)
 file.close()

[image: _images/tagged_feature.png]
Source code for this example: taggedFeature.py.

List of Tutorials

Indexed Feature

In the example, the signal is the membrane potential of a (model)
neuron which was stimulated with some stimulus. The events are again
the action potentials (or spikes) fired by that neuron. A typical
analysis performed on such data is the Spike triggered average which
represent the average stimulus that led to a spike. For each spike, a
snippet of the respective stimulus is cut out and later averaged. In
this example we store these stimulus snippets and link them to the
events by adding a Feature to the MultiTag. There are three
different flags that define how this link has to be interpreted. In
this case there is one snippet for each spike. The index of each
position has to be used as an index in the first dimension of the
Feature data. The LinkType has to be set to indexed.

 snippets.unit = "nA"
 set_dim = snippets.append_set_dimension()
 # add a descriptor for the time axis
 dim = snippets.append_sampled_dimension(stepsize)
 dim.unit = "s"
 dim.label = "time"
 dim.offset = -sta_offset * stepsize

 # set snippets as an indexed feature of the multi_tag
 multi_tag.create_feature(snippets, nix.LinkType.Indexed)

 # let's plot the data from the stored information
 plot_data(multi_tag)

[image: _images/spike_feature.png]
Source code for this example: spikeFeatures.py.

List of Tutorials

Retrieving feature data

The above sections have shown how to attach features to tagged
regions. To get the feature data back there are two ways. (i) You can
access the data via the selected feature as it is shown in the example above (:download: spikeFeatures.py <examples/spikeFeatures.py>) (line 61).

 snippets = tag.features[0].data[:]

With this line of code you get all the data stored in the Feature as
one numpy array. If you want to get the feature data that is related
to a singe point (or region) one can call (line 62):

 single_snippet = tag.retrieve_feature_data(3, 0)[:]

with the first argument being the index of the position and the second
one that of the feature. In case of Tag entities, there is only
one argument that is the index of the feature you want the data from.

List of Tutorials

Storing the origin of data

Let’s assume we want to note the origin of the data. For example they
have been obtained from a certain experiment or an experimental
subject. For this purpose Source entities are used. Sources can
be nested to reflect dependencies between different sources. For
example One may record data from different neurons in the same brain
region of the same animal.

create some source entities
subject.block.create_source('mouese A', 'nix.experimental_subject')
brain_region = subject.create_source('hippocampus', 'nix.experimental_subject')
cell_1 = brain_region.create_source('CA1 1', 'nix.experimental_subject')
cell_2 = brain_region.create_source('CA1 2', 'nix.experimental_subject')
add them to the data.
da1 = block.create_data_array("cell1 response", "nix.regular_sampled", data=response_1)
da1.sources.append(cell_1)
da2 = block.create_data_array("cell2 response", "nix.regular_sampled", data=response_2)
da2.sources.append(cell_2)

The Sources can be used to indicate links between data that cannot
be reflected by the data itself.

List of Tutorials

Adding arbitrary metadata

Almost all entities allow to attach arbitray metadata. The basic
concept of the metadata model is that Properties are oragnized in
Sections which in turn can be nested to represent hierarchical
structures. The Sections basically act like python
dictionaries. How to create sections and properties is demonstrated by
attaching information about the ‘Lenna’ image used above.

 if len(cell_text) > 0:
 nrows, ncols = len(cell_text)+1, len(columns)
 ax.axis('off')
 the_table = ax.table(cellText=cell_text,
 colLabels=columns,
 loc='center')
 for cell in the_table.get_children():
 cell.set_height(.075)
 cell.set_fontsize(16)

Source code for this example: imageWithMetadata.py.

[image: _images/image_with_metadata.png]
List of Tutorials

API Documentation for Data

TODO write something about the data model

File

A File represents a specific data source of a NIX back-end for example an NIX HDF5 file. All entities of the nix data
model (except the Value entity) must exist in the context of an open File object. Therefore NIX entities can’t be
initialized via their constructors but only through the factory methods of their respective parent entity.

Working with files

	1
2
3

	file = File.open("test.h5", FileMode.ReadWrite)
do some work
file.close()

File open modes

	
class nixio.FileMode

	
	
Overwrite = 'w'

	

	
ReadOnly = 'r'

	

	
ReadWrite = 'a'

	

File API

	
class nixio.File(h5file, compression)

	
	
blocks

	A property containing all blocks of a file. Blocks can be obtained by
their id or their index. Blocks can be deleted from the list, when a
block is deleted all its content (data arrays, tags and sources) will
be also deleted from the file. Adding new Block is done via the
create_block method of File. This is a read-only attribute.

	Type

	ProxyList of Block entities.

	
close()

	Closes an open file.

	
create_block(name, type_)

	Create a new block inside the file.

	Parameters

	
	name (str [https://docs.python.org/2.7/library/functions.html#str]) – The name of the block to create.

	type (str [https://docs.python.org/2.7/library/functions.html#str]) – The type of the block.

	Returns

	The newly created block.

	Return type

	Block

	
create_section(name, type_)

	Create a new metadata section inside the file.

	Parameters

	
	name (str [https://docs.python.org/2.7/library/functions.html#str]) – The name of the section to create.

	type (str [https://docs.python.org/2.7/library/functions.html#str]) – The type of the section.

	Returns

	The newly created section.

	Return type

	Section

	
created_at

	The creation time of the file. This is a read-only property.
Use force_created_at in order to change the creation time.

	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]

	
find_sections(filtr=<function FileMixin.<lambda>>, limit=None)

	Get all sections and their child sections recursively.

This method traverses the trees of all sections. The traversal is
accomplished via breadth first and can be limited in depth. On each
node or section a filter is applied. If the filter returns true the
respective section will be added to the result list.
By default a filter is used that accepts all sections.

	Parameters

	
	filtr (function) – A filter function

	limit (int [https://docs.python.org/2.7/library/functions.html#int]) – The maximum depth of traversal

	Returns

	A list containing the matching sections.

	Return type

	list of Section

	
flush()

	

	
force_created_at(t=None)

	Sets the creation time created_at to the given time
(default: current time).

	Parameters

	t (int [https://docs.python.org/2.7/library/functions.html#int]) – The time to set

	
force_updated_at(t=None)

	Sets the update time updated_at to the given time.
(default: current time)

	Parameters

	t (int [https://docs.python.org/2.7/library/functions.html#int]) – The time to set (default: now)

	
format

	The format of the file. This read only property should always have the
value ‘nix’.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
is_open()

	Checks whether a file is open or closed.

	Returns

	True if the file is open, False otherwise.

	Return type

	bool [https://docs.python.org/2.7/library/functions.html#bool]

	
classmethod open(path, mode='a', backend=None, compression='Auto')

	Open a NIX file, or create it if it does not exist.

	Parameters

	
	path – Path to file

	mode – FileMode ReadOnly, ReadWrite, or Overwrite.
(default: ReadWrite)

	backend – Either “hdf5” or “h5py”.
Defaults to “hdf5” if available, or “h5py” otherwise

	Returns

	nixio.File object

	
sections

	A property containing all root sections of a file. Specific root
sections can be obtained by their id or their index. Sections can be
deleted from this list. Notice: when a section is deleted all its child
section and properties will be removed too. Adding a new Section is
done via the crate_section method of File.
This is a read-only property.

	Type

	ProxyList of Section entities.

	
updated_at

	The time of the last update of the file. This is a read-only
property. Use force_updated_at in order to change the update
time.

	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]

	
validate()

	Checks if the File is a valid NIX file. This method is only available
when using the “hdf5” backend.

	Returns

	Result object

	
version

	The file format version.

	Type

	tuple

Block

The Block entity is a top-level, summarizing element that allows to
group the other data entities belonging for example to the same recording session.
All data entities such as Source, DataArray, Tag and
MultiTag have to be associated with one Block.

Create a new Block

A block can only be created on an existing file object. Do not use the blocks constructors for this
purpose.

	1

	block = file.create_block("session one", "recordingsession");

Working with blocks

After a block was created it can be used to create further entities. See the documentation of
Source, DataArray, Tag and MultiTag for more information. The next example shows how some
properties of a block can be accessed.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	block = file.blocks[some_id]

add metadata to a block
section = file.sections[sec_id]
block.metadata = section

get associated metadata from a block
block.metadata

remove associated metadata from a block
block.metadata = None

Deleting a block

When a block is deleted from a file all contained data e.g. sources, data arrays
and tags will be removed too.

	1

	del file.blocks[some_id]

Block API

	
class nixio.pycore.Block(nixparent, h5group, compression='Auto')

	
	
create_data_array(name, array_type, dtype=None, shape=None, data=None, compression='Auto')

	Create a new data array for this block. Either shape
or data must be given. If both are given their shape must agree.
If dtype is not specified it will default to 64-bit floating
points.

	Parameters

	
	name (str [https://docs.python.org/2.7/library/functions.html#str]) – The name of the data array to create.

	array_type (str [https://docs.python.org/2.7/library/functions.html#str]) – The type of the data array.

	dtype (numpy.dtype [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype]) – Which data-type to use for storage

	shape (tuple of int or long [https://docs.python.org/2.7/library/functions.html#long]) – Layout (dimensionality and extent)

	data (array-like data) – Data to write after storage has been created

	compression (Compression) – En-/disable dataset compression.

	Returns

	The newly created data array.

	Return type

	DataArray

	
create_group(name, type_)

	Create a new group on this block.

	Parameters

	
	name (str [https://docs.python.org/2.7/library/functions.html#str]) – The name of the group to create.

	type (str [https://docs.python.org/2.7/library/functions.html#str]) – The type of the group.

	Returns

	The newly created group.

	Return type

	Group

	
create_multi_tag(name, type_, positions)

	Create a new multi tag for this block.

	Parameters

	
	name (str [https://docs.python.org/2.7/library/functions.html#str]) – The name of the tag to create.

	type (str [https://docs.python.org/2.7/library/functions.html#str]) – The type of tag.

	positions (DataArray) – A data array defining all positions of the tag.

	Returns

	The newly created tag.

	Return type

	MultiTag

	
create_source(name, type_)

	Create a new source on this block.

	Parameters

	
	name (str [https://docs.python.org/2.7/library/functions.html#str]) – The name of the source to create.

	type (str [https://docs.python.org/2.7/library/functions.html#str]) – The type of the source.

	Returns

	The newly created source.

	Return type

	Source

	
create_tag(name, type_, position)

	Create a new tag for this block.

	Parameters

	
	name (str [https://docs.python.org/2.7/library/functions.html#str]) – The name of the tag to create.

	type (str [https://docs.python.org/2.7/library/functions.html#str]) – The type of tag.

	position – Coordinates of the start position
in units of the respective data dimension.

	Returns

	The newly created tag.

	Return type

	Tag

	
created_at

	The creation time of the entity. This is a read-only property.
Use force_created_at in order to change the creation time.

	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]

	
data_arrays

	A property containing all data arrays of a block. DataArray entities
can be obtained via their index or by their id. Data arrays can be
deleted from the list. Adding a data array is done using the Blocks
create_data_array method.
This is a read only attribute.

	Type

	ProxyList of DataArray entities.

	
definition

	The definition of the entity. The definition can contain a textual
description of the entity. This is an optional read-write
property, and can be None if no definition is available.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
find_sources(filtr=<function BlockMixin.<lambda>>, limit=None)

	Get all sources in this block recursively.

This method traverses the tree of all sources in the block. The
traversal is accomplished via breadth first and can be limited in
depth. On each node or source a filter is applied. If the filter
returns true the respective source will be added to the result list.
By default a filter is used that accepts all sources.

	Parameters

	
	filtr (function) – A filter function

	limit (int [https://docs.python.org/2.7/library/functions.html#int]) – The maximum depth of traversal

	Returns

	A list containing the matching sources.

	Return type

	list of Source

	
force_created_at(t=None)

	Sets the creation time created_at to the given time
(default: current time).

	Parameters

	t (int [https://docs.python.org/2.7/library/functions.html#int]) – The time to set.

	
force_updated_at(t=None)

	Sets the update time updated_at to the given time.
(default: current time)

	Parameters

	t (int [https://docs.python.org/2.7/library/functions.html#int]) – The time to set.

	
groups

	A property containing all groups of a block. Group entities can be
obtained via their index or by their id. Groups can be deleted from the
list. Adding a Group is done using the Blocks create_group method.
This is a read only attribute.

	Type

	ProxyList of Group entities.

	
id

	A property providing the ID of the Entity. The id is generated
automatically, therefore the property is read-only.

	Return type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
metadata

	Associated metadata of the entity. Sections attached to the entity
via this attribute can provide additional annotations. This is an
optional read-write property, and can be None if no metadata is
available.

	Type

	Section

	
multi_tags

	A property containing all multi tags of a block. MultiTag entities can
be obtained via their index or by their id. Tags can be deleted from
the list. Adding tags is done using the Blocks create_multi_tag method.
This is a read only attribute.

	Type

	ProxyList of MultiTag entities.

	
name

	The name of an entity. The name serves as a human readable
identifier. This is a read-only property; entities cannot be
renamed.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
sources

	A property containing all sources of a block. Sources can be obtained
via their index or by their id. Sources can be deleted from the list.
Adding sources is done using the Blocks create_source method.
This is a read only attribute.

	Type

	ProxyList of Source entities.

	
tags

	A property containing all tags of a block. Tag entities can be obtained
via their index or by their id. Tags can be deleted from the list.
Adding tags is done using the Blocks create_tag method.
This is a read only attribute.

	Type

	ProxyList of Tag entities.

	
type

	The type of the entity. The type is used in order to add semantic
meaning to the entity. This is a read-write property, but it can’t
be set to None.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
updated_at

	The time of the last update of the entity. This is a read-only
property. Use force_updated_at in order to change the update
time.

	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]

DataArray

The DataArray is the core entity of the NIX data model, its purpose is to
store arbitrary n-dimensional data. In addition to the common fields id,
name, type, and definition the DataArray stores sufficient information to
understand the physical nature of the stored data.

A guiding principle of the data model is provides enough information to create a
plot of the stored data. In order to do so, the DataArray defines a property
dataType which provides the physical type of the stored data (for example
16 bit integer or double precision IEEE floatingpoint number).
The property unit specifies the SI unit of the values stored in the
DataArray whereas the label defines what is given in this units.
Together, both specify what corresponds to the the y-axis of a plot.

In some cases it is much more efficient or convenient to store data not as
floating point numbers but rather as (16 bit) integer values as, for example
read from a data acquisition board. In order to convert such data to the
correct values, we follow the approach taken by the comedi data-acquisition
library (http://www.comedi.org) and provide polynomCoefficients and an
expansionOrigin.

Create and delete a DataArray

A DataArray can only be created at an existing block. Do not use the
DataArrays constructors for this purpose.

	1
2

	data_array = block.crate_data_array("matrix", "data");
del block.data_arrays[data_array]

DataArray API

	
class nixio.pycore.DataArray(nixparent, h5group)

	
	
append(data, axis=0)

	Append data to the DataSet along the axis specified.

	Parameters

	data – The data to append. Shape must agree except for the

specified axis
:param axis: Along which axis to append the data to

	
append_alias_range_dimension()

	Append a new RangeDimension that uses the data stored in this
DataArray as ticks. This works only(!) if the DataArray is 1-D and
the stored data is numeric. A ValueError will be raised otherwise.

	Returns

	The created dimension descriptor.

	Return type

	RangeDimension

	
append_range_dimension(ticks)

	Append a new RangeDimension to the list of existing dimension
descriptors.

	Parameters

	ticks (list of float) – The ticks of the RangeDimension to create.

	Returns

	The newly created RangeDimension.

	Return type

	RangeDimension

	
append_sampled_dimension(sampling_interval)

	Append a new SampledDimension to the list of existing dimension
descriptors.

	Parameters

	sampling_interval (float [https://docs.python.org/2.7/library/functions.html#float]) – The sampling interval of the SetDimension
to create.

	Returns

	The newly created SampledDimension.

	Return type

	SampledDimension

	
append_set_dimension()

	Append a new SetDimension to the list of existing dimension
descriptors.

	Returns

	The newly created SetDimension.

	Return type

	SetDimension

	
created_at

	The creation time of the entity. This is a read-only property.
Use force_created_at in order to change the creation time.

	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]

	
data

	DEPRECATED DO NOT USE ANYMORE! Returns self

	Type

	DataArray

	
data_extent

	The size of the data.

	Type

	set of int

	
data_type

	The data type of the data stored in the DataArray. This is a read only
property.

	Type

	DataType

	
definition

	The definition of the entity. The definition can contain a textual
description of the entity. This is an optional read-write
property, and can be None if no definition is available.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
delete_dimensions()

	Delete all the dimension descriptors for this DataArray.

	
dimensions

	A property containing all dimensions of a DataArray. Dimensions can be
obtained via their index. Adding dimensions is done using the
respective append methods for dimension descriptors.
This is a read only attribute.

	Type

	ProxyList of dimension descriptors.

	
dtype

	The data type of the data stored in the DataArray.
This is a read only property.

	Returns

	DataType

	
expansion_origin

	The expansion origin of the calibration polynomial.
This is a read-write property and can be set to None.
The default value is 0.

	Type

	float [https://docs.python.org/2.7/library/functions.html#float]

	
force_created_at(t=None)

	Sets the creation time created_at to the given time
(default: current time).

	Parameters

	t (int [https://docs.python.org/2.7/library/functions.html#int]) – The time to set.

	
force_updated_at(t=None)

	Sets the update time updated_at to the given time.
(default: current time)

	Parameters

	t (int [https://docs.python.org/2.7/library/functions.html#int]) – The time to set.

	
get_slice(positions, extents=None, mode=<DataSliceMode.Index: 1>)

	

	
id

	A property providing the ID of the Entity. The id is generated
automatically, therefore the property is read-only.

	Return type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
label

	The label of the DataArray. The label corresponds to the label of the
x-axis of a plot. This is a read-write property and can be set to
None.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
len()

	Length of the first dimension. Equivalent to DataSet.shape[0].

	Type

	int [https://docs.python.org/2.7/library/functions.html#int] or long [https://docs.python.org/2.7/library/functions.html#long]

	
metadata

	Associated metadata of the entity. Sections attached to the entity
via this attribute can provide additional annotations. This is an
optional read-write property, and can be None if no metadata is
available.

	Type

	Section

	
name

	The name of an entity. The name serves as a human readable
identifier. This is a read-only property; entities cannot be
renamed.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
polynom_coefficients

	The polynomial coefficients for the calibration. By default this is
set to a {0.0, 1.0} for a linear calibration with zero offset.
This is a read-write property and can be set to None

	Type

	list of float

	
read_direct(data)

	Directly read all data stored in the DataSet
into data. The supplied data must be a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] that
matches the DataSet’s shape, must have C-style contiguous memory layout
and must be writeable (see numpy.ndarray.flags [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags] and
ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] for more information).

	Parameters

	data (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The array where data is being read into

	
shape

	
	Type

	tuple of data array dimensions.

	
size

	Number of elements in the DataSet, i.e. the product of the
elements in shape.

	Type

	int [https://docs.python.org/2.7/library/functions.html#int]

	
sources

	Getter for sources.

	
type

	The type of the entity. The type is used in order to add semantic
meaning to the entity. This is a read-write property, but it can’t
be set to None.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
unit

	The unit of the values stored in the DataArray. This is a read-write
property and can be set to None.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
updated_at

	The time of the last update of the entity. This is a read-only
property. Use force_updated_at in order to change the update
time.

	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]

	
write_direct(data)

	Directly write all of data to the
DataSet. The supplied data must be a
numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] that matches the DataSet’s shape and must have
C-style contiguous memory layout (see numpy.ndarray.flags [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags] and
ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] for more information).

	Parameters

	data (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The array which contents is being written

DataSet

The DataSet object is used for data input/output to the underlying storage.

	
class nixio.pycore.data_array.DataSet

	
	
append(data, axis=0)

	Append data to the DataSet along the axis specified.

	Parameters

	data – The data to append. Shape must agree except for the

specified axis
:param axis: Along which axis to append the data to

	
data_extent

	The size of the data.

	Type

	set of int

	
data_type

	The data type of the data stored in the DataArray. This is a read only
property.

	Type

	DataType

	
dtype

	
	Type

	numpy.dtype [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html#numpy.dtype] object holding type infromation about
the data stored in the DataSet.

	
len()

	Length of the first dimension. Equivalent to DataSet.shape[0].

	Type

	int [https://docs.python.org/2.7/library/functions.html#int] or long [https://docs.python.org/2.7/library/functions.html#long]

	
read_direct(data)

	Directly read all data stored in the DataSet
into data. The supplied data must be a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] that
matches the DataSet’s shape, must have C-style contiguous memory layout
and must be writeable (see numpy.ndarray.flags [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags] and
ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] for more information).

	Parameters

	data (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The array where data is being read into

	
shape

	
	Type

	tuple of data array dimensions.

	
size

	Number of elements in the DataSet, i.e. the product of the
elements in shape.

	Type

	int [https://docs.python.org/2.7/library/functions.html#int]

	
write_direct(data)

	Directly write all of data to the
DataSet. The supplied data must be a
numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] that matches the DataSet’s shape and must have
C-style contiguous memory layout (see numpy.ndarray.flags [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags] and
ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] for more information).

	Parameters

	data (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – The array which contents is being written

Tags

Besides the DataArray the tag entities can be considered as the other
core entities of the data model.
They are meant to attach annotations directly to the data and to establish meaningful
links between different kinds of stored data.
Most importantly tags allow the definition of points or regions of interest in data
that is stored in other DataArray entities. The data array entities the
tag applies to are defined by its property references.

Further the referenced data is defined by an origin vector called position
and an optional extent vector that defines its size.
Therefore position and extent of a tag, together with the references field
defines a group of points or regions of interest collected from a subset of all
available DataArray entities.

Further tags have a field called features which makes it possible to associate
other data with the tag. Semantically a feature of a tag is some additional data that
contains additional information about the points of hyperslabs defined by the tag.
This could be for example data that represents a stimulus (e.g. an image or a
signal) that was applied in a certain interval during the recording.

Tag API

	
class nixio.pycore.Tag(nixparent, h5group)

	
	
create_feature(data, link_type)

	Create a new feature.

	Parameters

	
	data (DataArray) – The data array of this feature.

	link_type (LinkType) – The link type of this feature.

	Returns

	The created feature object.

	Return type

	Feature

	
created_at

	The creation time of the entity. This is a read-only property.
Use force_created_at in order to change the creation time.

	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]

	
definition

	The definition of the entity. The definition can contain a textual
description of the entity. This is an optional read-write
property, and can be None if no definition is available.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
extent

	The extent defined by the tag. This is an optional read-write
property and may be set to None.

	Type

	list of float

	
features

	A property containing all features of the tag. Features can be obtained
via their index or their id. Features can be deleted from the list.
Adding new features to the tag is done using the create_feature method.
This is a read only attribute.

	Type

	ProxyList of Feature.

	
force_created_at(t=None)

	Sets the creation time created_at to the given time
(default: current time).

	Parameters

	t (int [https://docs.python.org/2.7/library/functions.html#int]) – The time to set.

	
force_updated_at(t=None)

	Sets the update time updated_at to the given time.
(default: current time)

	Parameters

	t (int [https://docs.python.org/2.7/library/functions.html#int]) – The time to set.

	
id

	A property providing the ID of the Entity. The id is generated
automatically, therefore the property is read-only.

	Return type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
metadata

	Associated metadata of the entity. Sections attached to the entity
via this attribute can provide additional annotations. This is an
optional read-write property, and can be None if no metadata is
available.

	Type

	Section

	
name

	The name of an entity. The name serves as a human readable
identifier. This is a read-only property; entities cannot be
renamed.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
position

	The position defined by the tag. This is a read-write property.

	Type

	list of float

	
references

	A property containing all data arrays referenced by the tag. Referenced
data arrays can be obtained by index or their id. References can be
removed from the list, removing a referenced DataArray will not remove
it from the file. New references can be added using the append method
of the list.
This is a read only attribute.

	Type

	RefProxyList of DataArray

	
retrieve_data(refidx)

	

	
retrieve_feature_data(featidx)

	

	
sources

	Getter for sources.

	
type

	The type of the entity. The type is used in order to add semantic
meaning to the entity. This is a read-write property, but it can’t
be set to None.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
units

	Property containing the units of the tag. The tag must provide a
unit for each dimension of the position or extent vector.
This is a read-write property.

	Type

	list of str

	
updated_at

	The time of the last update of the entity. This is a read-only
property. Use force_updated_at in order to change the update
time.

	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]

MultiTag API

	
class nixio.pycore.MultiTag(nixparent, h5group)

	
	
create_feature(data, link_type)

	Create a new feature.

	Parameters

	
	data (DataArray) – The data array of this feature.

	link_type (LinkType) – The link type of this feature.

	Returns

	The created feature object.

	Return type

	Feature

	
created_at

	The creation time of the entity. This is a read-only property.
Use force_created_at in order to change the creation time.

	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]

	
definition

	The definition of the entity. The definition can contain a textual
description of the entity. This is an optional read-write
property, and can be None if no definition is available.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
extents

	The extents defined by the tag. This is an optional read-write
property and may be set to None.

	Type

	DataArray or None [https://docs.python.org/2.7/library/constants.html#None]

	
features

	A property containing all features of the tag. Features can be obtained
via their index or their id. Features can be deleted from the list.
Adding new features to the tag is done using the create_feature method.
This is a read only attribute.

	Type

	ProxyList of Feature.

	
force_created_at(t=None)

	Sets the creation time created_at to the given time
(default: current time).

	Parameters

	t (int [https://docs.python.org/2.7/library/functions.html#int]) – The time to set.

	
force_updated_at(t=None)

	Sets the update time updated_at to the given time.
(default: current time)

	Parameters

	t (int [https://docs.python.org/2.7/library/functions.html#int]) – The time to set.

	
id

	A property providing the ID of the Entity. The id is generated
automatically, therefore the property is read-only.

	Return type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
metadata

	Associated metadata of the entity. Sections attached to the entity
via this attribute can provide additional annotations. This is an
optional read-write property, and can be None if no metadata is
available.

	Type

	Section

	
name

	The name of an entity. The name serves as a human readable
identifier. This is a read-only property; entities cannot be
renamed.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
positions

	The positions defined by the tag. This is a read-write property.

	Type

	DataArray

	
references

	A property containing all data arrays referenced by the tag. Referenced
data arrays can be obtained by index or their id. References can be
removed from the list, removing a referenced DataArray will not remove
it from the file. New references can be added using the append method
of the list.
This is a read only attribute.

	Type

	RefProxyList of DataArray

	
retrieve_data(posidx, refidx)

	

	
retrieve_feature_data(posidx, featidx)

	

	
sources

	Getter for sources.

	
type

	The type of the entity. The type is used in order to add semantic
meaning to the entity. This is a read-write property, but it can’t
be set to None.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
units

	Property containing the units of the tag. The tag must provide a
unit for each dimension of the position or extent vector.
This is a read-write property.

	Type

	list of str

	
updated_at

	The time of the last update of the entity. This is a read-only
property. Use force_updated_at in order to change the update
time.

	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]

Source

	
class nixio.pycore.Source(nixparent, h5group)

	
	
create_source(name, type_)

	Create a new source as a child of the current Source.

	Parameters

	
	name (str [https://docs.python.org/2.7/library/functions.html#str]) – The name of the source to create.

	type (str [https://docs.python.org/2.7/library/functions.html#str]) – The type of the source.

	Returns

	The newly created source.

	Return type

	Source

	
created_at

	The creation time of the entity. This is a read-only property.
Use force_created_at in order to change the creation time.

	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]

	
definition

	The definition of the entity. The definition can contain a textual
description of the entity. This is an optional read-write
property, and can be None if no definition is available.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
find_sources(filtr=<function SourceMixin.<lambda>>, limit=None)

	Get all child sources of this source recursively.

This method traverses the tree of all sources. The traversal
is accomplished via breadth first and can be limited in depth. On each
node or source a filter is applied. If the filter returns true the
respective source will be added to the result list.
By default a filter is used that accepts all sources.

	Parameters

	
	filtr (function) – A filter function

	limit (int [https://docs.python.org/2.7/library/functions.html#int]) – The maximum depth of traversal

	Returns

	A list containing the matching sources.

	Return type

	list of Source

	
force_created_at(t=None)

	Sets the creation time created_at to the given time
(default: current time).

	Parameters

	t (int [https://docs.python.org/2.7/library/functions.html#int]) – The time to set.

	
force_updated_at(t=None)

	Sets the update time updated_at to the given time.
(default: current time)

	Parameters

	t (int [https://docs.python.org/2.7/library/functions.html#int]) – The time to set.

	
id

	A property providing the ID of the Entity. The id is generated
automatically, therefore the property is read-only.

	Return type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
metadata

	Associated metadata of the entity. Sections attached to the entity
via this attribute can provide additional annotations. This is an
optional read-write property, and can be None if no metadata is
available.

	Type

	Section

	
name

	The name of an entity. The name serves as a human readable
identifier. This is a read-only property; entities cannot be
renamed.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
referring_data_arrays

	

	
referring_multi_tags

	

	
referring_objects

	

	
referring_tags

	

	
sources

	A property containing all sources of a block. Sources can be obtained
via their index or by their id. Sources can be deleted from the list.
Adding sources is done using the Blocks create_source method.
This is a read only attribute.

	Type

	ProxyList of Source entities.

	
type

	The type of the entity. The type is used in order to add semantic
meaning to the entity. This is a read-write property, but it can’t
be set to None.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
updated_at

	The time of the last update of the entity. This is a read-only
property. Use force_updated_at in order to change the update
time.

	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]

Group

Groups establish a simple way of grouping entities that in some way
belong together. The Group exists inside a Block and can contain
(link) DataArrays, Tags, and MultiTags. As any other nix-entity, the
Groups is named, has a type, and a definition property. Additionally,
it contains data_arrays, tags, and multi_tags lists. As indicated
before, the group does only link the entities. Thus, deleting elements
from the lists does not remove them from file, it merely removes the
link from the group.

	1
2
3
4
5
6
7
8

	data_array = block.crate_data_array("matrix", "data");
tag = block.create_tag("a tag", "event", [0.0, 1.0])
group = block.create_group("things that belong together", "group")
group.tags.append(tag)
group.data_arrays.append(data_array)

del group.data_arrays[data_array]
del group.tags[tag]

Group API

	
class nixio.pycore.Group(nixparent, h5group)

	
	
created_at

	The creation time of the entity. This is a read-only property.
Use force_created_at in order to change the creation time.

	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]

	
data_arrays

	A property containing all data arrays referenced by the group.
Referenced data arrays can be obtained by index or their id. References
can be removed from the list, removing a referenced DataArray will not
remove it from the file. New references can be added using the append
method of the list.
This is a read only attribute.

	Type

	DataArrayProxyList of DataArray

	
definition

	The definition of the entity. The definition can contain a textual
description of the entity. This is an optional read-write
property, and can be None if no definition is available.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
force_created_at(t=None)

	Sets the creation time created_at to the given time
(default: current time).

	Parameters

	t (int [https://docs.python.org/2.7/library/functions.html#int]) – The time to set.

	
force_updated_at(t=None)

	Sets the update time updated_at to the given time.
(default: current time)

	Parameters

	t (int [https://docs.python.org/2.7/library/functions.html#int]) – The time to set.

	
id

	A property providing the ID of the Entity. The id is generated
automatically, therefore the property is read-only.

	Return type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
metadata

	Associated metadata of the entity. Sections attached to the entity
via this attribute can provide additional annotations. This is an
optional read-write property, and can be None if no metadata is
available.

	Type

	Section

	
multi_tags

	A property containing all MultiTags referenced by the group. MultiTags
can be obtained by index or their id. Tags can be removed from the
list, removing a referenced MultiTag will not remove it from the file.
New MultiTags can be added using the append method of the list.
This is a read only attribute.

	Type

	MultiTagProxyList of MultiTags

	
name

	The name of an entity. The name serves as a human readable
identifier. This is a read-only property; entities cannot be
renamed.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
sources

	Getter for sources.

	
tags

	A property containing all tags referenced by the group. Tags can be
obtained by index or their id. Tags can be removed from the list,
removing a referenced Tag will not remove it from the file.
New Tags can be added using the append method of the list.
This is a read only attribute.

	Type

	TagProxyList of Tags

	
type

	The type of the entity. The type is used in order to add semantic
meaning to the entity. This is a read-write property, but it can’t
be set to None.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
updated_at

	The time of the last update of the entity. This is a read-only
property. Use force_updated_at in order to change the update
time.

	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]

API Documentation for Metadata

The model for storing metadata is largely equivalent to the odML [http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2011.00016] (open metadata Markup Laguage) model. In brief: the
model consists of so called Properties that contain Values much like a key-value pair (plus some additional fields).
These Properties can be grouped into Sections which themselves can be nested to built a tree-structure. Sections are
defined by a name and a type (e.g. a stimulus-type section will contain information that is related to a stimulus).
The basic feature of the odML approach is that it defines the model but not the items that are described or the terms
that are used in this. On the other hand where standardization is required each Section can be based on an
odML-terminology that standardizes without restricting to the terms defined within the terminology.

Section

Metadata stored in a NIX file can be accessed directly from an open file.

Create and delete sub sections

	1
2

	sub = section.create_section("a name", "type")
del section.sections[sub]

Add and remove properties

Properties can be created using the create_property method. Existing properties can be accessed and deleted
directly from the respective section.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	section.create_property("one", [Value(1)])
section.create_property("two", [Value(2)])

iterate over properties
for p in section:
 print(p)

access by name
one = section["one"]

convert properties into a dict
dct = dict(section.items())

delete properties
del section["one"]
del section["two"]

Section API

	
class nixio.pycore.Section(nixparent, h5group)

	
	
create_property(name, values)

	Add a new property to the section.

	Parameters

	
	name (str [https://docs.python.org/2.7/library/functions.html#str]) – The name of the property to create.

	values (list of Value) – The values of the property.

	Returns

	The newly created property.

	Return type

	Property

	
create_section(name, type_)

	Creates a new subsection that is a child of this section entity.

	Parameters

	
	name (str [https://docs.python.org/2.7/library/functions.html#str]) – The name of the section to create.

	type (str [https://docs.python.org/2.7/library/functions.html#str]) – The type of the section.

	Returns

	The newly created section.

	Return type

	Section

	
created_at

	The creation time of the entity. This is a read-only property.
Use force_created_at in order to change the creation time.

	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]

	
definition

	The definition of the entity. The definition can contain a textual
description of the entity. This is an optional read-write
property, and can be None if no definition is available.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
file

	Root file object.

	Type

	File

	
find_related(filtr=<function SectionMixin.<lambda>>)

	Get all related sections of this section.

The result can be filtered. On each related section a filter is
applied. If the filter returns true the respective section will be
added to the result list. By default a filter is used that accepts all
sections.

	Parameters

	filtr (function) – A filter function

	Returns

	A list containing the matching related sections.

	Return type

	list of Section

	
find_sections(filtr=<function SectionMixin.<lambda>>, limit=None)

	Get all child sections recursively.
This method traverses the trees of all sections. The traversal is
accomplished via breadth first and can be limited in depth.
On each node or section a filter is applied.
If the filter returns true the respective section will be added to the
result list. By default a filter is used that accepts all sections.

	Parameters

	
	filtr (function) – A filter function

	limit (int [https://docs.python.org/2.7/library/functions.html#int]) – The maximum depth of traversal

	Returns

	A list containing the matching sections.

	Return type

	list of Section

	
force_created_at(t=None)

	Sets the creation time created_at to the given time
(default: current time).

	Parameters

	t (int [https://docs.python.org/2.7/library/functions.html#int]) – The time to set.

	
force_updated_at(t=None)

	Sets the update time updated_at to the given time.
(default: current time)

	Parameters

	t (int [https://docs.python.org/2.7/library/functions.html#int]) – The time to set.

	
get_property_by_name(name)

	Get a property by its name.

	Parameters

	name (str [https://docs.python.org/2.7/library/functions.html#str]) – The name to check.

	Returns

	The property with the given name.

	Return type

	Property

	
has_property_by_name(name)

	Checks whether a section has a property with a certain name.

	Parameters

	name (str [https://docs.python.org/2.7/library/functions.html#str]) – The name to check.

	Returns

	True if the section has a property with the given name,
False otherwise.

	Return type

	bool [https://docs.python.org/2.7/library/functions.html#bool]

	
id

	A property providing the ID of the Entity. The id is generated
automatically, therefore the property is read-only.

	Return type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
inherited_properties()

	

	
items()

	

	
link

	Link to another section. If a section is linked to another section,
the linking section inherits all properties from the target section.
This is an optional read-write property and may be set to None.

	Type

	Section

	
mapping

	

	
name

	The name of an entity. The name serves as a human readable
identifier. This is a read-only property; entities cannot be
renamed.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
parent

	The parent section. This is a read-only property. For root sections
this property is always None.

Accessing this property can be slow when the metadata tree is large.

	Type

	Section

	
pprint(max_depth=1, indent=2, max_length=80, current_depth=0)

	

	
props

	A property containing all Property entities associated with the
section. Properties can be accessed by index of via their id.
Properties can be deleted from the list. Adding new properties is done
using the create_property method.
This is a read-only attribute.

	Type

	ProxyList of Property

	
referring_blocks

	

	
referring_data_arrays

	

	
referring_groups

	

	
referring_multi_tags

	

	
referring_objects

	

	
referring_sources

	

	
referring_tags

	

	
repository

	URL to the terminology repository the section is associated with.
This is an optional read-write property and may be set to None.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
sections

	A property providing all child sections of a section. Child sections
can be accessed by index or by their id. Sections can also be deleted:
if a section is deleted, all its properties and child sections are
removed from the file too. Adding new sections is achieved using the
create_section method.
This is a read-only attribute.

	Type

	ProxyList of Section

	
type

	The type of the entity. The type is used in order to add semantic
meaning to the entity. This is a read-write property, but it can’t
be set to None.

	Type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
updated_at

	The time of the last update of the entity. This is a read-only
property. Use force_updated_at in order to change the update
time.

	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]

Property

	
class nixio.pycore.Property(nixparent, h5dataset)

	
	
created_at

	The creation time of the entity. This is a read-only property.
Use force_created_at in order to change the creation time.

	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]

	
data_type

	

	
definition

	

	
delete_values()

	

	
force_created_at(t=None)

	Sets the creation time created_at to the given time
(default: current time).

	Parameters

	t (int [https://docs.python.org/2.7/library/functions.html#int]) – The time to set.

	
force_updated_at(t=None)

	Sets the update time updated_at to the given time.
(default: current time)

	Parameters

	t (int [https://docs.python.org/2.7/library/functions.html#int]) – The time to set.

	
id

	A property providing the ID of the Entity. The id is generated
automatically, therefore the property is read-only.

	Return type

	str [https://docs.python.org/2.7/library/functions.html#str]

	
mapping

	

	
name

	

	
pprint(indent=2, max_length=80, current_depth=-1)

	

	
unit

	

	
updated_at

	The time of the last update of the entity. This is a read-only
property. Use force_updated_at in order to change the update
time.

	Return type

	int [https://docs.python.org/2.7/library/functions.html#int]

	
values

	

Value

	
class nixio.Value(value)

	
	
to_string(unit='')

	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	append() (nixio.pycore.data_array.DataSet method)

 	(nixio.pycore.DataArray method)

 	append_alias_range_dimension() (nixio.pycore.DataArray method)

 	
 	append_range_dimension() (nixio.pycore.DataArray method)

 	append_sampled_dimension() (nixio.pycore.DataArray method)

 	append_set_dimension() (nixio.pycore.DataArray method)

B

 	
 	Block (class in nixio.pycore)

 	
 	blocks (nixio.File attribute)

C

 	
 	close() (nixio.File method)

 	create_block() (nixio.File method)

 	create_data_array() (nixio.pycore.Block method)

 	create_feature() (nixio.pycore.MultiTag method)

 	(nixio.pycore.Tag method)

 	create_group() (nixio.pycore.Block method)

 	create_multi_tag() (nixio.pycore.Block method)

 	create_property() (nixio.pycore.Section method)

 	create_section() (nixio.File method)

 	(nixio.pycore.Section method)

 	create_source() (nixio.pycore.Block method)

 	(nixio.pycore.Source method)

 	
 	create_tag() (nixio.pycore.Block method)

 	created_at (nixio.File attribute)

 	(nixio.pycore.Block attribute)

 	(nixio.pycore.DataArray attribute)

 	(nixio.pycore.Group attribute)

 	(nixio.pycore.MultiTag attribute)

 	(nixio.pycore.Property attribute)

 	(nixio.pycore.Section attribute)

 	(nixio.pycore.Source attribute)

 	(nixio.pycore.Tag attribute)

D

 	
 	data (nixio.pycore.DataArray attribute)

 	data_arrays (nixio.pycore.Block attribute)

 	(nixio.pycore.Group attribute)

 	data_extent (nixio.pycore.data_array.DataSet attribute)

 	(nixio.pycore.DataArray attribute)

 	data_type (nixio.pycore.data_array.DataSet attribute)

 	(nixio.pycore.DataArray attribute)

 	(nixio.pycore.Property attribute)

 	DataArray (class in nixio.pycore)

 	DataSet (class in nixio.pycore.data_array)

 	definition (nixio.pycore.Block attribute)

 	(nixio.pycore.DataArray attribute)

 	(nixio.pycore.Group attribute)

 	(nixio.pycore.MultiTag attribute)

 	(nixio.pycore.Property attribute)

 	(nixio.pycore.Section attribute)

 	(nixio.pycore.Source attribute)

 	(nixio.pycore.Tag attribute)

 	
 	delete_dimensions() (nixio.pycore.DataArray method)

 	delete_values() (nixio.pycore.Property method)

 	dimensions (nixio.pycore.DataArray attribute)

 	dtype (nixio.pycore.data_array.DataSet attribute)

 	(nixio.pycore.DataArray attribute)

E

 	
 	expansion_origin (nixio.pycore.DataArray attribute)

 	
 	extent (nixio.pycore.Tag attribute)

 	extents (nixio.pycore.MultiTag attribute)

F

 	
 	features (nixio.pycore.MultiTag attribute)

 	(nixio.pycore.Tag attribute)

 	File (class in nixio)

 	file (nixio.pycore.Section attribute)

 	FileMode (class in nixio)

 	find_related() (nixio.pycore.Section method)

 	find_sections() (nixio.File method)

 	(nixio.pycore.Section method)

 	find_sources() (nixio.pycore.Block method)

 	(nixio.pycore.Source method)

 	flush() (nixio.File method)

 	force_created_at() (nixio.File method)

 	(nixio.pycore.Block method)

 	(nixio.pycore.DataArray method)

 	(nixio.pycore.Group method)

 	(nixio.pycore.MultiTag method)

 	(nixio.pycore.Property method)

 	(nixio.pycore.Section method)

 	(nixio.pycore.Source method)

 	(nixio.pycore.Tag method)

 	
 	force_updated_at() (nixio.File method)

 	(nixio.pycore.Block method)

 	(nixio.pycore.DataArray method)

 	(nixio.pycore.Group method)

 	(nixio.pycore.MultiTag method)

 	(nixio.pycore.Property method)

 	(nixio.pycore.Section method)

 	(nixio.pycore.Source method)

 	(nixio.pycore.Tag method)

 	format (nixio.File attribute)

G

 	
 	get_property_by_name() (nixio.pycore.Section method)

 	get_slice() (nixio.pycore.DataArray method)

 	
 	Group (class in nixio.pycore)

 	groups (nixio.pycore.Block attribute)

H

 	
 	has_property_by_name() (nixio.pycore.Section method)

I

 	
 	id (nixio.pycore.Block attribute)

 	(nixio.pycore.DataArray attribute)

 	(nixio.pycore.Group attribute)

 	(nixio.pycore.MultiTag attribute)

 	(nixio.pycore.Property attribute)

 	(nixio.pycore.Section attribute)

 	(nixio.pycore.Source attribute)

 	(nixio.pycore.Tag attribute)

 	
 	inherited_properties() (nixio.pycore.Section method)

 	is_open() (nixio.File method)

 	items() (nixio.pycore.Section method)

L

 	
 	label (nixio.pycore.DataArray attribute)

 	len() (nixio.pycore.data_array.DataSet method)

 	(nixio.pycore.DataArray method)

 	
 	link (nixio.pycore.Section attribute)

M

 	
 	mapping (nixio.pycore.Property attribute)

 	(nixio.pycore.Section attribute)

 	metadata (nixio.pycore.Block attribute)

 	(nixio.pycore.DataArray attribute)

 	(nixio.pycore.Group attribute)

 	(nixio.pycore.MultiTag attribute)

 	(nixio.pycore.Source attribute)

 	(nixio.pycore.Tag attribute)

 	
 	multi_tags (nixio.pycore.Block attribute)

 	(nixio.pycore.Group attribute)

 	MultiTag (class in nixio.pycore)

N

 	
 	name (nixio.pycore.Block attribute)

 	(nixio.pycore.DataArray attribute)

 	(nixio.pycore.Group attribute)

 	(nixio.pycore.MultiTag attribute)

 	(nixio.pycore.Property attribute)

 	(nixio.pycore.Section attribute)

 	(nixio.pycore.Source attribute)

 	(nixio.pycore.Tag attribute)

O

 	
 	open() (nixio.File class method)

 	
 	Overwrite (nixio.FileMode attribute)

P

 	
 	parent (nixio.pycore.Section attribute)

 	polynom_coefficients (nixio.pycore.DataArray attribute)

 	position (nixio.pycore.Tag attribute)

 	positions (nixio.pycore.MultiTag attribute)

 	
 	pprint() (nixio.pycore.Property method)

 	(nixio.pycore.Section method)

 	Property (class in nixio.pycore)

 	props (nixio.pycore.Section attribute)

R

 	
 	read_direct() (nixio.pycore.data_array.DataSet method)

 	(nixio.pycore.DataArray method)

 	ReadOnly (nixio.FileMode attribute)

 	ReadWrite (nixio.FileMode attribute)

 	references (nixio.pycore.MultiTag attribute)

 	(nixio.pycore.Tag attribute)

 	referring_blocks (nixio.pycore.Section attribute)

 	referring_data_arrays (nixio.pycore.Section attribute)

 	(nixio.pycore.Source attribute)

 	referring_groups (nixio.pycore.Section attribute)

 	referring_multi_tags (nixio.pycore.Section attribute)

 	(nixio.pycore.Source attribute)

 	
 	referring_objects (nixio.pycore.Section attribute)

 	(nixio.pycore.Source attribute)

 	referring_sources (nixio.pycore.Section attribute)

 	referring_tags (nixio.pycore.Section attribute)

 	(nixio.pycore.Source attribute)

 	repository (nixio.pycore.Section attribute)

 	retrieve_data() (nixio.pycore.MultiTag method)

 	(nixio.pycore.Tag method)

 	retrieve_feature_data() (nixio.pycore.MultiTag method)

 	(nixio.pycore.Tag method)

S

 	
 	Section (class in nixio.pycore)

 	sections (nixio.File attribute)

 	(nixio.pycore.Section attribute)

 	shape (nixio.pycore.data_array.DataSet attribute)

 	(nixio.pycore.DataArray attribute)

 	size (nixio.pycore.data_array.DataSet attribute)

 	(nixio.pycore.DataArray attribute)

 	
 	Source (class in nixio.pycore)

 	sources (nixio.pycore.Block attribute)

 	(nixio.pycore.DataArray attribute)

 	(nixio.pycore.Group attribute)

 	(nixio.pycore.MultiTag attribute)

 	(nixio.pycore.Source attribute)

 	(nixio.pycore.Tag attribute)

T

 	
 	Tag (class in nixio.pycore)

 	tags (nixio.pycore.Block attribute)

 	(nixio.pycore.Group attribute)

 	to_string() (nixio.Value method)

 	type (nixio.pycore.Block attribute)

 	(nixio.pycore.DataArray attribute)

 	(nixio.pycore.Group attribute)

 	(nixio.pycore.MultiTag attribute)

 	(nixio.pycore.Section attribute)

 	(nixio.pycore.Source attribute)

 	(nixio.pycore.Tag attribute)

U

 	
 	unit (nixio.pycore.DataArray attribute)

 	(nixio.pycore.Property attribute)

 	units (nixio.pycore.MultiTag attribute)

 	(nixio.pycore.Tag attribute)

 	updated_at (nixio.File attribute)

 	(nixio.pycore.Block attribute)

 	(nixio.pycore.DataArray attribute)

 	(nixio.pycore.Group attribute)

 	(nixio.pycore.MultiTag attribute)

 	(nixio.pycore.Property attribute)

 	(nixio.pycore.Section attribute)

 	(nixio.pycore.Source attribute)

 	(nixio.pycore.Tag attribute)

V

 	
 	validate() (nixio.File method)

 	Value (class in nixio)

 	
 	values (nixio.pycore.Property attribute)

 	version (nixio.File attribute)

W

 	
 	write_direct() (nixio.pycore.data_array.DataSet method)

 	(nixio.pycore.DataArray method)

 _static/plus.png

_images/regular_sampled.png
voltage [mV]

1.00

075

050

025

0.00

-0.25

-0.50

-0.75

-1.00

sinewave

3
time [s]

_images/retrieved_rois.png
0 5 101520253035

_images/multi_roi.png

_static/up-pressed.png

_images/multiple_time_series.png
voltage [mV]

waveforms

10 — sin
— cos
0.5
0.0
-0.5
-1.0
5 6 10 12

time [s]

_static/up.png

_images/spike_tagging.png
membrane voltage

membrane voltage

—— membrane voltage
eee spike times
2090 00 0000000000 LR L
150 B
1.0} B
0.5
0.0 L L .
0.0 0.2 0.4 0.6 0.8 1.0

time [s]

_images/tagged_feature.png
membrane voltage

stimulus [nA]

membrane voltage

membrane voltage |
spike times

time [s]

stimulus

stimulus
spike times §

time [s]

_images/single_roi.png

_images/spike_feature.png
membrane voltage

stimulus [nA]

—
stimulus [nA]

membrane voltage

~
o

—— membrane voltage |{

0f »

e*s spike times
15
1.0

0.5

0.0

0 2 4 6 8 10
time [s]

single stimulus snippet spike-triggered average

— snippet No 4

ol

“1f

2L gl
" " " 2 " "

-0.010 -0.005 0.000 0.005 -0.010 -0.005 0.000
time [s] time [s]

0.005

_images/untagged_feature.png
membrane voltage

stimulus current [nA]

N
o

1.0

0.5

0.0

—— membrane voltage
[stimulus epoch

time [s]

10

— stimulus

time [s]

_static/ajax-loader.gif

_images/image_with_metadata.png

_images/irregular.png
voltage [mV]

sinewave

0.0

0.2

0.4 0.6 0.8
time [s]

_images/lenna.png

nav.xhtml

 Table of Contents

 		
 NIXIO Python Package for NIX Datafiles

 		
 Installation Guidelines

 		
 Dependencies

 		
 Installation instructions

 		
 Advanced installation

 		
 Linux

 		
 Windows

 		
 Build NIX from Source

 		
 Install NIXPy

 		
 Linux

 		
 Windows

 		
 Build NIXPy from Source

 		
 Overview

 		
 Design Principles

 		
 Creating a file

 		
 Storing data

 		
 Dimension descriptors

 		
 Annotate regions in the data

 		
 Adding further information

 		
 Defining the Source of the data

 		
 Arbitrary metadata

 		
 Units

 		
 Tutorials

 		
 List of Tutorials

 		
 Working with Files

 		
 Selecting a backend

 		
 Basic data structures

 		
 Regularly sampled data

 		
 Irregularly sampled data

 		
 Event data

 		
 Series of signals

 		
 Image data

 		
 Tagging regions

 		
 Single point or region

 		
 Multiple points or regions

 		
 Tagging spikes in membrane potential

 		
 Retrieving tagged regions

 		
 Unit support in tagging

 		
 Features

 		
 Untagged Feature

 		
 Tagged Feature

 		
 Indexed Feature

 		
 Retrieving feature data

 		
 Storing the origin of data

 		
 Adding arbitrary metadata

 		
 API Documentation for Data

 		
 File

 		
 Working with files

 		
 File open modes

 		
 File API

 		
 Block

 		
 Create a new Block

 		
 Working with blocks

 		
 Deleting a block

 		
 Block API

 		
 DataArray

 		
 Create and delete a DataArray

 		
 DataArray API

 		
 DataSet

 		
 Tags

 		
 Tag API

 		
 MultiTag API

 		
 Source

 		
 Group

 		
 Group API

 		
 API Documentation for Metadata

 		
 Section

 		
 Create and delete sub sections

 		
 Add and remove properties

 		
 Section API

 		
 Property

 		
 Value

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/logo.png
www.g-node.org

_static/down.png

_static/minus.png

